K L. Docur;11er'\)t No. iooo{gg;
.. , .‘ ecember
BN FLE OOPY @

General Definition of Project
(Ada / SQL Binding)

for the

AD-A228 481

)
AUTOMATION

i
U
1]
S

Ty
.q'

SAIC. RATIONAL
Ada

Contract No. F19628-88-D-0032
Task IR67 - SQL / Ada Program Language Interface
CDRL Sequence No. 2000

31 December 1989 DT l C

ELECTE

' X0V09 1990
4

B

REPORT DOCUMENTATION PAGE Form Approved

OMI No. 0704-0188

Public (en3rting burdgen tor this oo HecUon 1 IBTGIMaton & Sstmated TG prtade 4 5 o puee seapy o IRCLUINT N0 1M (00 (€ 00w 1 g IrLel NS, SEAfERIn J e <1 0) Sata 30Uty
atherrg ang MantaNNg the Gty needrd. and COmPIetng Ang (eviewing the coliection Lt ot ra gt Send cammants o AFGHE] T4 Durden o\!;rv\-.|(n o any Cthet gspect of Y’n’\'
Codlecton S ArMADON IR LGING WSO LOT C03UCR T IS DUPARA 15 W ISR 115N 1o 110, 31100y Yo7, 0y Directgrate for intrmatie 0 Qpearations and Kep ity 1219 jetiergon
Dbt aay, Suite 1204 Aringtan, VA 227004300 and t9 the (0 tice ot BAanagqement arg ud o0 Bapetsire Regu Qs Proje t{0TG3-0IHE) Washinagton, { (727%G3
1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
December 31, 1989 Final
4. TITLE AND SUBTITLE . . 5. FUNDING NUMBERS
General Definition of Project (Ada/SQL Binding) C: F19628-88-D-0032
4
6. AUTHOR(S)

S. Phillips

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
IBM Federal Sector Division REPORT NUMBER

800 N. Frederick Avenue
Gaithersburg, MD 20879

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
Electronic Systems Division AGENCY REPORT NUMBER
Alr Force Systems.Command, USAF
Hanscom AFB, MA 01731-5000 CDRL Sequence No. 2000

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/ AVAILABILITY STATEMENT 12b. DISTRIBUTION CODL

(-

13, ABSTRACT (Maximum 200 words)

>A standard binding was needed between Ada and SQL (Structured Query Language), the
FANSI and DoD standard for accessing commercial relational data base management sys-
tems (DBMS's). SQL was not designed to be embedded within agplications in general
gurpose programming languages, such as Ada. Previously developed Ada-SQL b%ndings

ave had various technical drawbacks.
.—o/"‘-

A prototype Ada-SQL bindin§ was built by automating the SQL Ada Module Extension
methodology (SAME). SAME 1Is a method for building Ada applications that access

DBMS's via SQL. , SAME extends SQL by exploiting the features of A%i;:>

o oo A b i B o e e
A - - T e

'Thigkigchnical Plan presents the background, technical approach, ;nd top-level capa-
bilities of the project. It also discusses such technicag problems as storing
arbitrary data types 1in a data e and using SAME without a module language compiler

% ,Jnrv"/; /{T/:) RS 5- JaTD ‘Q..ﬁ?&/\w"{f’a ml,{(ﬁ[,/’&

il | ¢
T i). () o &

15. NUMBER OF PAGLS
21

14, SUBJECT TERMS
STARS, Ada, SQL, Structured Query Language, data base

16. PRICE COOt
management system, DBMS

17. SECURITY CLASSIFICATION | 18. SECURITY CLASSINICATION [19. SLCURITY CLASSHIICATION |} 20. UMITATION OF ABSTRACT
OF REPORT OFf THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified UL

NG 75A0-01-280-5500 A Stangarg Farm QOH (Nev 2 HY)
Crecoepang by ANSE MY SR
RN

General Definition of Project
(Ada / SQL Binding)
for the

Software Technology for Adaptable, Reliable Systems
(STARS) Program

Contract No. F19628-88-D-0032

Task IR67 — SQL / Ada Program Language Interface

CDRL Sequence No. 2000

31 December 1989

. Acoegs -
| Acces ion For

| NTIS GRA&I =

Prepared for: | DTIc TR =
. .. i Unan:ounced
Electronic Systems Division | Justifteation __

Air Force Systems Command, USAF -
Hanscom AFB, MA 01731-5000 | W
}__2 t_ributriqrr){.*___“

L__aj'a 1lability Godes
j jAvail and/or

Prepared by: Diat | Special
IBM Systems Integration Division J ’ I f
800 North Frederick Avenue ﬂ {
Gaithersburg, MD 20879 cee L

LMSC-F376700

Technical Plan
for

Ada/SQL Binding
Supporting the SAME Methodology

SQL

Contract Number: F19628-88-D-0032/0002
CDRL Number 2000

December 3, 1989
Submitted to:

IBM Corporation
Systems Integration Division
800 N. Frederick Road
Gaithersburg, Maryland 20879

Attn: Ray Grimes

=rLockheed
Missiles & Space Company, Inc.
Software Technology Center
2100 East St. Elmo Road
Org. 96-10 / Bldg. 30E

Austin, TX 78744
(512) 448-5740

E-mail: phiilips@stc.lockheed.com

The Ada/SQL Binding Project LMSC-F376700
December 5, 1989 4 : CDRL 2000

A Technical Plan for
Ada/SQL Binding Supporting the SAME Methodology

TABLE OF CONTENTS

BACKGROUND . .ottt ettt e te e e e a e e 1
PROJECT DESCRIPTIONiutitiiiiiiesiataneateniniientraneeeaesaeeenanans 2
TECHNICAL APPROACH AND TOP-LEVEL DESCRIPTION.................. 3
OF PROPOSED FUNCTIONAL CAPABILITIES
o 13 < § - 1 S U 5
DOMaAIN VW ittt ettt e e eeas 5
-\ o112 10 8 1105 o 10 A 13 AU 6
(€15:10 100 N} 1) o1 « S PPN 6
Abstract_Domain_Generator.ooveuvieereeierniiiaentreeeneeeaneereneeneannes 6
Abstract_Interface_Generator.oouiiiuieeiiineiieriieineiieiaereaeaenaanes 6
Domain PacKages...iiiuiiiiiiiiiiiiiiiie e rer e e e e e aens 6
Base_Specific_Domains.ocviiiiiiiiiiiiiii e 7
Abstract_Interface Moduleooiiiniiieiiiiiii e 7
N0) 85, (e 1e 01 (S PP 7
Application Programiiuiiiiieiiiii it iet et rteee e ne e e aeaae 7
Ada PACKAGE SPECIFICATIONS DEFININGcccocveiiiiiiiininaannnen. 7
INTERCOMPONENT INTERFACES
Domain_View Procedure..........cooiiiiiiiiiiiiiiiiiiiiiiiii i 8
-\ TY 0 - (0 G B 1o Vs o E VT €151 721 o) U OO 9
Abstract_Interface_VIEewcoiiiiiiiiiiiiiii i 9
Abstract_Interface_Generator.......ovuiiiiiiiiiee it eieire e, 11
Suppliers_Definition_PKg........coooiiiiiiiiiiiiii 13
Abstract_Interface (Ada Spec and Body).....ccoevuieiniiiiiiiiniiiiiiiiiien, 13
DEVELOPMENT APPROACH.ottt 14
Decimal Data TYPe ...vviniiii i 1s
ArbItrary Data Ty PeS . et ieiii i 16
Using SAME Without a Module Language Compiler........cc.cccvueeeenns i6
REFERENCES ittt it e et e et et e et e e aaenanss 16

LIST OF ILLUSTRATIONS

Figure 1. Configuration of SAME Methodologyc....... cooiiiiial, 2
Figure 2. Detailed Architectural Structure of the Proposed Svstem 5

Lockheed Software Technology Center i

The Ada/SQL Binding Project LMSC-F376700
December 5, 1989 : CDRL 2000

A Technical Plan for Ada/SQL Binding -
Supporting the SAME Methodology

The Ada/SQL Binding project will implement a binding between the Ada programming language
and a relational data base management system, specifically by automating the SQL Ada Module
Extensions (SAME) methodology as described in Guidelines for the Use of the SAME, an SEI
Technical Report [i]. This is the technical plan, CDRL 2000, for implementing a prototypc
binding supporting that methodology.

BACKGROUND

Conventional approaches for binding ANSI-standard SQL to Ada allow embedding SQL
statements directly into Ada programs, thereby creating something that is neither pure SQL nor
pure Ada. A preprocessor is used to remove the SQL statements and replace them with valid Ada
subprogram calls. However, direct access to the data base is still part of the application program.
By using SAME approach, these two contexts, SQL statements and Ada statements, are separate
modules thereby implementing a modular approach to data-base definition and access. This
modular approach allows the efficiency of having programming tasks assigned to programmers
who specialize in each area.

SAME is a method for the construction of Ada applications that access data base management
systems whose data manipulation language is SQL. As its name implies, SAME extends the
Module Language defined in the ANSI SQL standard Database Language—SQL [2] by exploiting
the capabilities of Ada. The defining characteristic of the module language is the collocation of
SQL statements, physically separated from the Ada application, in an object called the concrete
module. SAME treats the module much the same as it treats any other foreign language; that is, it
imports complete modules, not language fragments.

SAME provides the binding between these two modules through an interface layer, called the
abstract module. The abstract module serves to transform data from abstract definitions to concrete
types (and back again). The abstract module makes calls to an Ada specification representative of
the SQL module (the concrete interface).

During application design and development, SAME is used as follows:

* The abstract domains that occupy data base columns are defined and described as Ada types.
This is done using standard packages available to users of SAME methodology.

 The application programmer, along with the SQL programmer, determines the services that will
be needed from the data base. They are coded in SQL and collected in a concrete module .

Lockheed Software Technology Center 1

CDRL 2000 A Technical Plan for Ada/SQL BindingSupporting the SAME Methodology LMSC-F376700

» An abstract interface is created. This is a set of packagé spcéiﬁcations declaring the record type
definitions needed to describe row records and the procedure declarations needed to access the
relevant concrete module procedures. This interface will be called by the Ada application.

« The type within the abstract domain definition must be determined for each data item at the
abstract interface.

» The abstract module, the bodies of the procedures declared in the abstract interface, is created.

 The application program is written. It can be written once the abstract interface specification is
completed and concurrently with the creation of the abstract module bodies because the
application does not need the module bodies to compile against.

PROJECT DESCRIPTION

The purpose of this effort is to produce a system that will allow an Ada program to talk to a
commercial data base management system (DBMS). The delivered packages can be tailored to
support any SQL-based DBMS. The first prototype will be developed on a Digital VAXstation
2000. This hardware choice was driven by the fact that a production-quality SQL module language
compiler and its associated relational data base management system are available on this platform
(as is an acceptable Ada compiler and development environment). Currently, this is the only
readily available system with all needed software. The module language compiler could be
simulated using one of many DBMS systems that support embedded SQL. However, SAME was
intended for use with a module language compiler, which makes this choice a valid one. Figure 1
shows the configuration of an Ada application accessing a DBMS using SAME.

SQL_Slandard
Package

Domain Packages
based on STP

/N

A{}eoreseaces in ADStraCt 11} -|I|-r Wnlﬂ il ©
Interface " o

i (spec) Concrete
Interface Migbl e DBMS
(spec)

1

Standard Types
Packages (STP)

Application
Program

Abstract bw
Module

(body) > —™

Figure 1. Configuration of SAME Methodology. (Black arrows indicate
Ada visibility; hatched arrows show data flow.)

Lockheed Software Technology Center

o

CDRL 2000 A Technical Plan for Ada/SQL BindingSupporting the SAME Methodology LMSC-F376700

TECHNICAL APPROACH AND TOP- LEVEL DESCRIPTION OF
PROPOSED FUNCTIONAL CAPABILITIES

The approach for this project is based upon previous work completed for STARS Foundation
Contract N60921-87-C-0293. That effort used input defining the data base structure gathered from
a data base administrator (in the form of an Ada procedure that instantiated many generics) and
automatically generated an Ada package for use by the application programmer and valid SQL
statements that provided data definition of the required tables. This project will receive the same
form of input from a user (in this case, an Abstract_Interface programmer) and automatically
generate domain packages, the abstract interface, and the abstract module. It avoids preprocessors,
and all of the activity necessary to support it is hidden from the application programmer. In this
scenario, the interface programmer provides the interface that is to be WITHed by an application.
In order to provide the application programmers with these facilities, the interface programmer
must understand both the data base structure and each application's needs.

Providing automatic generation of several packages from one source offers several advantages:

» The work load is less. By writing and executing only one Ada procedure, many packages are
automatically generated.

» All of these packages are related, and generating them from one source guarantees compatibility.

* All necessary suppo:t for the automatic generation is hidden from the Ada and SQL
programmers. If the underlying data base is changed, the Ada application may not even need
recompilation.

» This structure requires no preprocessing of source code in any language, which eliminates
another source of error and guarantees that any certified Ada compiler will be able to provide
this function. This is achieved through the use of Ada generics.

The first three points are goals of all such efforts and should be considered minimum requirements.
The fourth avoids preprocessors and depends heavily on nested Ada generics. Examples of Ada
code are provided later in this document to describe this approach..

The interface programmer initiates the process of making the data base available to the Ada
programmer. The first step in this process will require the interface programmer to write an Ada
procedure, following specific rules and guidelines, that automatically creates the domain packages
used by the application. The first step in writing this description is to instantiate the
Abstract_Domain_Generator generic with two parameters, one defining the name of the domain

Lockheed Software Technology Center 3

CDRL 2000 A Technical Plan for Ada/SQL BindingSupporting the SAME Methodology LMSC-F376700

package and the second naming the columns within the data base that are being defined as abstract
domains. This generic will be instantiated for each separate domain package. '

The second step in this procedure will be to instantiate the Domain_Generator generic for each
domain specified in the initial instantiaton. This method provides enough redundancy to check for
undefined or multiply defined domains (or columns). The generic is instantiated with the domain
name, its class, range values, and whether or not the type supports null values.

When this Ada procedure is compiled and executed, syntactically valid Ada packages that support
SAME abstract domain semantics are automatically generated. These are compiled and made
available to the application programmer. Also, an Ada package specification
Base_Specific_Domains is automatically generated to be used by the interface programmer as he
completes his task by autornatfcally generating the Abstract_Interface (Ada package specification
and body).

To generate the Abstract_Interface, the interface programmer will once again write an Ada
procedure that instantiates several generics. This procedure will WITH the previously generated
Ada package specification Base_Specific_Domains that contains an enumerated type of all valid
domains. This will ensure consistency between parameters of the procedures of the abstract
interface and the actual domains.

The first step in writing this procedure is to instantiate the Abstract_Interface_Generator generic. It
is instantiated with the name of the abstract interface package, an enumerated type representing the
row record names to be defined, and an enumerated type representing the procedure names that
will make up the interface. Once this is instantiated, subsequent nested generics will be instantiated
with objects of these two enumeration types, ensuring semantic consistency. The next level of
generic is instantiated for each row record. The generic parameters are the row_name (of the
previously defined row-record-names type) and an enumerated type representing the name of each
record component. This is followed by an instantiation of generic package
Generate_Record_Component for each component in the record.

Still within the Abstract_Interface_Generator, the next step is to instantiate the Generate_Procedure
generic. The parameters to the generic are the procedure name and an enumerated type
representing parameter names. This is instantiated once for each procedure in the interface. The
next level generic is instantiated once for each parameter of the procedure. This generic is
instantiated with the parameters name, its type, and its mode. By nesting generics in this manner
the implementation is provided with enough semantic knowledge of the structure of the
Abstract_Interface so that most incomplete definitions, missing definitions, and semantically
invalid definitions are caught at compilation. After successful compilation and execution, an Ada

Lockheed Software Technology Center 4

CDRL 2000 LMSC-F376700

A Technical Plan for Ada/SQL BindingSupporting the SAME Methodology

package representing the Abstract_Interface has been a.utoma'tically generated. The package is
compiled and made available to the application programmer. It is this package that will interface
the DBMS and the Ada program. Figure 2 represents the detailed architectural structure of the
proposed system. Each functional component is further explained in the next section.

Packages

The following paragraphs describe the packages in Figure 2 in detail. SAME standard packages
are not included since they are not being developed as part of this contract.

Step 2.
Interface
programmer
writes , Abstract
L— Domain O JUO [TP
§ Generato . Abstract - -
== e (... Domain S\ | Intertace
i . " Packages - Packages N\ opedification
- Step 4.
.Baéz_&?ap;gﬁc Ada Application
Step 3. : Application programmer
Interface DR Program writes
svrrti)tge;ammer < Abstract .- o S
Abstract Abstract - Interface + hEA
@ '_ Interface interface 4. 3. "Module
. . View Genetator -(Spec.and Step 1.
. Body): saL SQL module
Module programmer
(Ada Spec writes
and SQL %
Body)
>
Error Package'

Figure 2. Detailed Architectural Structure of the Proposed System.

(Hatched lines

indicate generation, with the arrowhead pointing to the generated code; solid lines
show Ada visibility with the arrowhead pointing to the WITHed code. Dark ovals
indicate SAME packages, and lighter ovals show automatically generated code.
Unshaded ovals show manually input, and hatched ones show code to be provided

for the binding. Packages used snly during development appear to the left of the

vertical gray bar, packages used at run time appear to the right.)

Domain _View

Domain_View is an Ada procedure written by the interface programmer to define the domains
needed by the application programmer. When this procedure is compiled and executed, Ada
packages representing the domains are automatically generated for use by the application program.

Lockheed Software Technology Center 5

CDRL 2000 A Technical Plan for Ada/SQL BindingSupporting the SAME Methodology LMSC-F376700

As such, it is not a deliverable of this project, rather the rules and methods for writing this
procedure will be delivered. Its size will depend upon the number of domains to be included in the
domain package, as well as each domain's characteristics (type, null-bearing, etc.). The procedure
will be written specifically for each application (or set of applications), therefore each procedure is
100-percent new code.

Abstract_Interface_View

Abstract_Interface_View is the second Ada procedure that must be written by the interface
programmer. It is specific to the services requested of the data base and particular rows in the data
base. Again, it is not a deliverable of this project, but the rules and methods for writing this
procedure will be delivered. The procedure will be written specifically for each application (set of
applications), therefore each procedure is 100-percent new code.

Generator_Support

Generaator_Support is an Ada package specification that will contain common declarations
(generally enumerated types) for the packages to be delivered. It will contain approximately 100
lines of new code. (Itis not shown in Figure 2 since it contains only global declarations.)

Abstract_Domain_Generator

Abstract_Domain_Generator is a generic Ada package that contains several layers of nested
generics. It will be instantiated by the Domain_View written by the interface programmer. The
instantiation will be used to create the domain packages which will be WITHed by the application
programmer and the abstract interface. Itis a deliverable of this project and will be approximately
325 lines of Ada code. Approximately 15 percent of this code will be reused from the previous
STARS contract.

Abstract_Interface_Generator

Abstract_Interface_Generator is a generic Ada package that contains several layers of nested
generics. It will be instantiated by the Abstract_Interface View written by the interface
programmer. The instantiation will be used to generate the Ada specification and body of the
abstract interface module. Itis a deliverable of this project and will be approximately 975 lines of
Ada code. Approximately 20 percent of this code will be reused from the previous STARS
contract.

Domain Packages

The Domain packages will be automatically generated by the instantiation of the Domain View,
written by the interface programmer. They will be semantically correct Ada and adhere to the
SAME methodology. They will vary in size depending on the number of domains needed by the
application.

Lockheed Software Technology Center 6

CDRL 2000 A Technical Plan for Ada/SQL BindingSupporting the SAME Methodology LMSC-F376700

Base_Specific_Domains

Base_Specific_Domains is an automatically generated Ada package specification that will be used
by the Abstract_Interface_Generic. It will vary in size depending on the number of domains
needed by the application.

Abstract_Interface Module

Abstract_Interface module is an Ada package (specitication and body) automatically generated by
the instantiation of the Abstract_Interface generic. It will vary in size depending on the number of
SQL services needed by the application and the types of information requested.

SOL Module

SQL Module represents the Ada package specification and its corresponding SQL module, which
contains the SQL statements to implement services requested to/from the data base. This package
will be written manually for each application (set of applications) and its size will depend on the
application.

Application Program

The Ada application program delivered for demonstration will be dependent on the data base
services requested. The application will be 100-percent new code.

Ada PACKAGE SPECIFICATIONS DEFINING INTERCOMPONENT
INTERFACES

The following listings are examples of the structure outlined in the preceding paragraphs. They are
by no means complete but are intended to demonstrate the feasibility of the approach. Specifically,
the specifications of the generic packages Abstract_Domain_Generator and Abstract_Interface
contain some features that are experimental and omit others that will be needed in production.
Specifically, we have not addressed conveying SQL semantic information for generation of the
Abstract module bodies. Specific information will be needed to determine the logic of these
bodies. Further research and design prototypes will be needed to provide a straightforward
implementation for the interface programmer. The bodies of the these packages have not been
included, but they will, of course, be deliverable. Since the best way to be precise about the
proposed interface is to present compilable Ada specs, the following is given with some
explanation. '

Lockheed Software Technology Center 7

CDRL 2000 A Technical Plan for Ada/SQL BindingSupporting the SAME Methodology LMSC-F376700

Domain_View Procedure

The Domain_View procedure is written by the interface programmer to describe the domains to be
used by the Ada application. Rules and methods for writing these procedure will be included in the
user documentation, CDRL 2020.

with generator_support;
use generator support;
with abstract_domain_generator;

-- This procedure is written by the interface programmer to
-- describe the domains to be used by the application
~-- programmer and the abstract interface

procedure domain_view 1is
begin
declare
type doms is (sno, sname, status, city); -- the domains
--within this domain pkg
~- This generic, abstract_domain_generator, is instantiated once
~- for each domain package

package domainl is new abstract_domain_generator
("Suppliers Definition Pkg", doms);

-- This generic, generate_domain is instantiated once for each
-- abstract domain within the package

package first is new domainl.generate domain
(sno, char, 1, 5, contains_null);

package second is new domainl.generate_domain
(sname, char, 1, 20, contains_null);

package third is new domainl.generate_domain
(status, int, 0, 100, contains_null);

package fourth is new domainl.generate domain
(city, char, 1,15,contains_null);

begin
start_generation; -- procedure call to start generating
-- the packages
end;

-- second domain would go here
-- third etc

end domain_view;

Lockheed Software Technology Center 8

CDRL 2000 A Technical Plan for Ada/SQL BindingSupporting the SAME Methodology LMSC-F376700
Abstract_Domain_Generator

The Abstract_Domain_Generator is a generic package containing levels of nested generics, which
when instantiated by the interface program in will automatically generate domain packages needed.

with generator_support;
use generator_support;

generic
domain package name: string; -- what the domain package will be
- - -- named
type domains is (<>); -- one for each domain you will have
package abstract_domain_generator is
generic

type_name: domains;
class: class_types;
range_start: integer; -- represents length, range, etc.
range_stop: integer;
null bearing: null_indicator:= contains_null;
package generate_domain is
end generate_domain;

generic
type_name: nomains;
class: class_types;
range_based_on: domains; -- used when this types range is based
~- on lengths specified by anther domain
null bearing: null_indicator:= contains_null;
package generate_domain2 is
end generate_domain2;

end abstract_domain generator;

Abstract_Interface_View

The Abstract_Interface_View is written by the interface programmer to describe the records and the
procedures to be included in the abstract interface.

with base_specific_domains; ~- generated automatically
use base_specific_domains;

with abstract_interface_generator;

with generator support;

use ‘generator_support;

procedure abstract_interface_view is
type records is (supplier_record type); -- only one record in
-~ this example
type procs is (acquiresupplier, incrstatus, setstatus);
-- 3 procedures in the abstract interface specification
-~ The first level of instantiation is for the entire abstract
-- interface..it 1is done only once

Lockheed Software Technology Center 9

CDRL 2000 A Technical Plan for Ada/SQL BindingSupporting the SAME Methodology LMSC-F376700

package ab_if is new abstract_interface_generator(
concrete module_ name => "example c",
abstract_ “interface _name => "example c_module"”,
record_ names => records,
procedure_names => procs);
begin
declare
type components is (sno, sname, status, city);
-- components of this record
-- The following is the instantiation of the record generator
-- generic..once for each record type declaration in the
-- abstract interface

package first_record is new ab_if.recoxrd_generator(
components_in_record => components,
record_name => supplier_record_type);

-- The following are instantiations of the component
-- generator generic..once for each component of this record

package first component is new
first_record.component_generator (
component name => sno,
component _domain_type => sno_not_null);
package second_component is new
first_record.component_generator (
component_name => sname,
component _domain_type => sname_type);
package third component is new
first_record.component_generator (
component name => status,
component _domain_type => status_type);
package fourth component is new
first_record.component generator (
comoonent _hame => city,
component “domain _type => city type);

begin
start_generation; -- calls to initiate the generation of
-~ records
end;

—-— next record here
-- next record here

declare
type params is (sno, supplier_record, found);

-- The following instantiation is for procedures within the
-- abstract interface. It is done once for each procedure

package procl is new ab_if.procedure_generator(
procedure_name => acquiresupplier,
parameters => params);

-- The following generic is for describing parameters to
-- this procedure. Parameter type will determine which
-- generic i1s instantiated. A generic will be

Lockheed Software Technology Center 10

CDRL 2000 A Technical Plan for Ada/SQL BindingSupporting the SAME Methodology LMSC-F376700
-- instantiated for each parameter.

package paraml is new :
procl.params_of_domain_type_generator (params => sno,
its_type => sno_not_null,
its_mode => in_param);

package param2 is new
procl.params_of record_type_generator (params
supplier_record,
its_type => supplier_record_type,
1ts_mode => inout_param);

package param3 is new
procl.params_of boolean_type_generator (params => found,
its_mode => out_param);

U
\Y

begin

start_generation; -- calls to initiate the generation of
--procedures

end;

-- next procedure here
-—- next procedure here

end abstract_interface_view;
Abstract_Interface_Generator

The Abstract_Interface_Generator is a deliverable of the contract. It contains levels of nested
generics that, when instantiated by the interface program (Abstract_Interface_View), will
automatically generate the abstract interface (specification and body).

with generator_ support;

use generator_support;

with base_specific_domains; -- automatically generated package
use base_specific_domains;

generic
-- first parameter represents name of the concrete module
concrete_module_name : string;

-- second parameter represents name of the abstract i/f
abstract_interface_name : string;

type record names is (<>); -- names of all records to be declared
type procedure names is (<>); -- names all procs to be declared

package abstract_interface_generator is

-- The following generic, record generator is instantiated once
-- for each record in the interface

generic
—-- first parameter represents components in this record
type components_in_record is (<>);
record name : record names;

package record_generator is

Lockheed Software Technology Center 11

CDRL 2000 A Technical Plan for Ada/SQL BindingSupporting the SAME Methodology LMSC-F376700

-- This following generic, component_generator is instantiated
-- once for each component within the record
generic
component name : components_in_record;
component_domain_type : base_specific_domain_types;
package component generator is
end component_generator;

end record_generator;

-- The following generic, procedure generator, is instantiated
-- once for each procedure in the interface

generic
procedure_name : procedure_names;
type parameters is (<>);

package procedure_generator is

-- A generic is instantiated once for each parameter to this
-— procedure. The type of the parameter will determine which
-- generic is instantiated

generic
params : parameters;
its_type : base_specific_domain_types;
its_mode : mode;
package params_of domain_ type_generator is
end params_of_domain_type generator;

-- Note this generic is for parameters of type record type

generic

params : parameters;

its_type : record names;

its_mode : mode;
package params_of record type_generator is
end params_of_ record_type_ generator;

-- Note this generic is for parameters of type boolean
generic
params : parameters;
its_mode : mode;
package params_of_boolean_type generator is
end params_of_ boolean_type generator;
end procedure_generator;

end abstract_interface_generator;

Lockheed Software Technology Center 12

\ CDRL 2000 A Technical Plan for Ada/SQL BindingSupporting the SAME Meihodology LMSC-F376700
Suppliers_Definition_Pkg

The Suppliers_Domain_Pkg is automatically created after execution of the domain_view described
earlier. It represents the domain package(s) that the interface programmer and the application

programmer will use.

with SQL_Char_Pkg; use SQL_Char_ Pkg;
with SQL_Int_Pkg; use SQL_ Int_ Pkg;

package Suppliers_Definiton_Pkg is

type SNONN_Base is new SQL Char Not Null;

subtype SNO Not Null is SNONN Base (1..5);

type SNO Base is new SQL_ Char;

subtype SNO Type is SNO Base (SNO_not_Null'Length);

package SNO_Ops is new SQL_Char_Ops (SNO_Base, SNONN Base);

type SNAMENN Base is new SQL Char Not Null;

subtype SNAME _Not Null is SNAMENN Base (1..20):

type SNAME Base is new SQL_Char;

subtype SNAME _Type 1is SNAME _Base (SNAME not_Null'Length);

package SNAME Ops is new SQL Char_Ops (SNAME _Base, SNAMENN Base);

type Status_Not_null is new SQL_Int Not_null;

type Status Type is new SQL__ Int;

package Status_Ops is new SQL Int_Ops (Status_Type,
Status_Not_ Null);

type CITYNN Base is new SQL_Char_Not Null;

subtype CITY Not Null is CITYNN Base (1..15);

type CITY Base is new SQL Char;

subtype CITY _Type 1is CITY Base (CITY_not Null'Length);

package CITY Ops is new SQL Char_Ops (CITY _Base, CITYNN Base);

end Suppliers_ Definition_Pkg;
Abstract_Interface (Ada Spec and Body)

Abstract_Interface (Ada spec and body) is automatically generated from the execution of
Abstract_Interface_View described earlier This package is the application programmers interface to
the SQL data base. (Note: Only a portion of the generated code is presented here).

with suppliers_defintion_pkg;
use suppliers_defintion pkg;

package example_c_module is
type supplier_ record type 1is record
sSno : sno_not_null;
sname : sname_type;
scatus : status_type;
city : city_type;

Lockheed Software Technology Center | 13

CDRL 2000 A Technical Plan for Ada/SQL BindingSupporting the SAME Methodology LMSC-F376700

end record;

procecure acquiresupplier (sno_in : in sno_not_null;
supplier_record : in out supplier_ record_type;
found : out boolean);

end example_c_module;

with sgl_standard, sql_communications_pkg, sql_database_error_pkg,
example_ concrete_module;
use sql_standard, sql_communications_pkg, sql_database_error_pkg,
example_concrete_module;

package example_c module body is
use sname_ops, status_ops, city_ops;

procedure acquiresupplier (sno_in : in sno_not_null;
supplier_record : in out supplier_ record_type;
found : out boolean) is

sname_c : char (sname_not_null'range);

status_c : int;

city_c : char (city not_null'range);

sname_indic, status_indic, city_indic : indicator type:

begin
example_concrete_module.acquiresupplier (char (sno_in),

char (supplier record.sno),
sname_c, sname_indic,
status_c, status_indic,
city_c, city_indic,
sglcede) ;

-- logic of body will be generated here

end acquiresupplier;

end example_ c_module;

DEVELOPMENT APPROACH

The CDRL delivery of Ada code for this contract supports iterative prototype development. The
successive systems will be developed and delivered in the following manner.

The first iteration of the project will support automatic generation of the Ada specifications for the
abstract module and the domain packages. This will be done by writing an Ada procedure that,
when executed, will automatically generate the code. The content and semantics cf this procedure
will be determined during the first iteration also.

Lockheed Software Technology Center 14

CDRL 2000 A Technical Plan for Ada/SQL BindingSupporting the SAME Methodology LMSC-F376700

The second iteration of the project will support automatic generation of the abstract module body
and the SQL concrete module. This will require refining the content and semantics of the
procedure developed in the first iteration to contain SQL semantic information specific to an
application.

Time permitting, the final iteration of the project will address automatic generation of the the data
definition language and an implementation without a module language compiler. Modifying the
implementation to support a DBMS that does not include a module language compiler will prove
the feasibility of the approach for any SQL-based DBMS, specifically the DBMS chosen for use in
the Software Repository.

In general, this contract will explore the feasibility of automatic code generation to support the
SAME methodology for accessing an SQL database from within an Ada program. The contract
will not attempt to rework or refine the definition of the SAME. There are however, several open
issues raised in [1] left to be addressed by specific implementations. These issues are detailed here
and our approach to their implementation is given.

Decimal Data Type

ANSI SQL supports the type decimal. The Ada programming language, however supports no
directly analogous type. Furthermore, ANSI standard SQL, as described in [2}, does not support
decimal data in Ada programs. The SAME standard, therefore, does not provide a standard
suﬁport package for null and non-null bearing decimal types. [1] does detail a method for
providing decimal data type support for numeric data coded in binary coded decimal (BCD). This
choice was made since any DBMS that supports the decimal type is likely to do so by storing
values of the type in the machine's packed or binary coded decimal representation. Support for
BCD in SAME is that of an abstract data type whose fundamental operations (arithmetic,
comparison, etc.) are provided by assembler-level routines. It is inefficient in comparison to
software that might be provided by a compiler that directly supports BCD. Furthermore, this
implementation would be specific to each assembly language for each machine. To implement a
similar approach for this contract would require learning the assembler language for the VAX
workstations hardware and developing routines for decimal support. We believe this approach is
too industrious (and completely nonportable) for an 8-month contract. Furthermore, the DBMS
used for this contract, VAX RDB, provides limited support for packed decimal type. Because the
data bases that underlie VAX SQL do not support the data type, specifying the decimal data type
for a column will generate a warning message and create the column with a data type that depends
on the precision argument specified:

Lockheed Software Technology Center 15

XX —

CDRL 2000 A Technical Plan for Ada/SQL BindingSupporting the SAME Methodology LMSC-F376700

« decimal(1) through decimal(4) are converted to smallint,

* decimal(5) through decimal(9) are converted to integer,

¢ decimal(10) through decimal(18) are converted to quadword, etc.

Our implementation will allow this automatic conversion also. Should a standard implementation
for decimal support be incorporated into the ANSI standard, its addition to this implementation
would be straightforward.

Arbitrary Data Types

SAME provides standard support for types in ANSI standard SQL. Many data base management
systems extend the standard to other types. SAME documentation outlines the way a SAME user
can extend the data typing facilities. While this approach is not easily automated (and possibly not
implementable at all), it is quite straightforward. SAME provides standard support for Ada
enumeration types and presents two separate support packages for the date-time data type to
demonstrate type extension. Time permitting, a simple record type will be defined within the Ada
application domain and support for arbitrary type mapping will be developed.

Using SAME Without a Module Language Compiler

The SAME approach assumes the existence of an SQL module language compiler. However, the
approach may still be used in environments where no such compiler exists. In fact, the STARS
repository data base and associated environment may not include an SQL module language
compiler. Therefore, this project will simulate the use of a module language comp.ler for some
data base as deemed appropriate by IBM. Earlier discussions have suggested Oracle as such a
possibility. Therefore, initial research will head in that direction. As an interesting note, when
researching Ada interfaces available with Oracle, such as Pro*Ada, we found that the decimal data
type, as discussed previously, is not supported by the Oracle Call Interface, further substantiating
our decision not include specific support for this type in the Ada program.

REFERENCES

(1] M. H. Graham. 1989. Guidelines for the Use of the SAME. SEI Technical Report
CMUY/SEI-89-TR-16 and ESD-TR-89-24. Pittsburgh, PA: Software Engineering Institute,
Carmnegie Mellon University.

[2] Database Language—SQL. American National Standards Institute, 1986. X3.135-1986.

Lockheed Software Technology Center 16

—4—

